ON MANY-SORTED ALGEBRAIC CLOSURE OPERATORS

J. CLIMENT VIDAL AND J. SOLIVERES TUR

ABSTRACT. A theorem of Birkhoff-Frink asserts that every algebraic closure operator on an ordinary set arises, from some algebraic structure on the set, as the operator that constructs the subalgebra generated by a subset. However, for many-sorted sets, i.e., indexed families of sets, such a theorem is not longer true without qualification. We characterize the corresponding many-sorted closure operators as precisely the uniform algebraic operators.

Some theorems of ordinary universal algebra can not be automatically generalized to many-sorted universal algebra, e.g., Matthiessen [5] proves that there exist many-sorted algebraic closure systems that can not be concretely represented as the set of subalgebras of a many-sorted algebra. As is well known, according to a representation theorem of Birkhoff and Frink [1], this is not so for the single-sorted algebraic closure systems.

In [2] it was obtained a concrete representation for the so-called many-sorted uniform 2-algebraic closure operators. However, as will be proved below, confirming a conjecture by A. Blass in his review of [2], the main result in [2] remains true if we delete from the above class of many-sorted operators the condition of 2-algebraicity. Therefore a many-sorted algebraic closure operator will be concretely representable as the set of subalgebras of a many-sorted algebra iff it is uniform. We point out that the proof we offer follows substantially that in Grätzer [4] for the single-sorted case, but differs from it, among others things, by the use we have to make, on the one hand, of the concept of uniformity, missing in the single-sorted case, and, on the other hand, of the Axiom of Choice, because of the lack, in the many-sorted case, of a canonical choice in the definition of the many-sorted operations.

In what follows we use, for a set of sorts S and an S-sorted signature Σ , the concept of many-sorted Σ -algebra and subalgebra in the standard meaning, see e.g., [3].

To begin with, as for ordinary algebras, also the set of subalgebras of a manysorted algebra is an algebraic closure system.

Proposition 1. Let \underline{A} be a many-sorted Σ -algebra. Then the set of all subalgebras of \underline{A} , denoted by Sub(\underline{A}), is an algebraic closure system on A, i.e., we have

- (1) $A \in \operatorname{Sub}(\underline{A})$.
- (2) If I is not empty and $(X^i)_{i \in I}$ is a family in $\operatorname{Sub}(\underline{A})$, then $\bigcap_{i \in I} X^i$ is also in $\operatorname{Sub}(\underline{A})$.
- (3) If I is not empty and $(X^i)_{i \in I}$ is an upwards directed family in $\operatorname{Sub}(\underline{A})$, then $\bigcup_{i \in I} X^i$ is also in $\operatorname{Sub}(\underline{A})$.

However, as we will prove later on, in the many-sorted case the many-sorted algebraic closure operator canonically associated to the algebraic closure system of the subalgebras of a many-sorted algebra has an additional and characteristic property, that of being uniform.

Date: November 22, 2004.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 08A30, 06A15; Secondary: 08A68.

Key words and phrases. Many-sorted algebra, support, many-sorted algebraic closure operator, many-sorted uniform algebraic closure operator.

Now we recall the concept of support of a sorted set and that of many-sorted algebraic closure operator on a sorted set, essentials to define that of many-sorted algebraic uniform closure operator.

Definition 1. Let A be an S-sorted set. Then the support of A, denoted by supp(A), is the subset $\{s \in S \mid A_s \neq \emptyset\}$ of S.

Definition 2. Let A be an S-sorted set. A many-sorted algebraic closure operator on A is an operator J on Sub(A), the set of all S-sorted subsets of A, such that, for every $X, Y \subseteq A$, satisfies:

- (1) $X \subseteq J(X)$, i.e., J is extensive.
- (2) If $X \subseteq Y$, then $J(X) \subseteq J(Y)$, i.e., J is isotone.
- (3) J(J(X)) = J(X), i.e., J is idempotent.
- (4) $J(X) = \bigcup_{F \in \operatorname{Sub}_{f}(X)} J(F)$, i.e., J is algebraic, where a part F of X is in $\operatorname{Sub}_{f}(X)$, the set of *finite S-sorted subsets* of X, iff $\operatorname{supp}(F)$ is finite and, for every $s \in \operatorname{supp}(F)$, F_s is finite.

A many-sorted algebraic closure operator J on A is uniform iff, for $X, Y \subseteq A$, from $\operatorname{supp}(X) = \operatorname{supp}(Y)$, follows that $\operatorname{supp}(J(X)) = \operatorname{supp}(J(Y))$.

Definition 3. Let \underline{A} be a many-sorted Σ -algebra. We denote by $\operatorname{Sg}_{\underline{A}}$ the manysorted algebraic closure operator on A canonically associated to the algebraic closure system $\operatorname{Sub}(\underline{A})$. If $X \subseteq A$, $\operatorname{Sg}_A(X)$ is the *subalgebra of* \underline{A} generated by X.

Next, as for ordinary algebras, we define for a many-sorted Σ -algebra <u>A</u> an operator on $\operatorname{Sub}(A)$ that will allow us to obtain, for every subset of A, by recursion, an N-ascending chain of subsets of A from which, taking the union, we will obtain an equivalent, but more constructive, description of the subalgebra of <u>A</u> generated by a subset of A. Moreover, we will make use of this alternative description to prove the uniformity of the operator Sg_A and also in the proof of the representation theorem.

Definition 4. Let $\underline{A} = (A, F)$ be a many-sorted Σ -algebra.

- (1) We denote by $\underline{E}_{\underline{A}}$ the operator on $\operatorname{Sub}(A)$ that assigns to an S-sorted subset X of A, $\underline{E}_{\underline{A}}(X) = X \cup \left(\bigcup_{\sigma \in \Sigma_{\cdot,s}} F_{\sigma}[X_{\operatorname{ar}(\sigma)}]\right)_{s \in S}$, where, for $s \in S$, $\Sigma_{\cdot,s}$ is the set of all many-sorted formal operations σ such that the coarity of σ is s and for $\operatorname{ar}(\sigma) = (s_j)_{j \in m} \in S^*$, the arity of σ , $X_{\operatorname{ar}(\sigma)} = \prod_{j \in m} X_{s_j}$.
- (2) If $X \subseteq A$, then the family $(\underline{\mathrm{E}}^{n}_{\underline{A}}(X))_{n \in \mathbb{N}}$ in $\mathrm{Sub}(A)$ is such that $\underline{\mathrm{E}}^{0}_{\underline{A}}(X) = X$ and $\underline{\mathrm{E}}^{n+1}_{\underline{A}}(X) = \underline{\mathrm{E}}_{\underline{A}}(\underline{\mathrm{E}}^{n}_{\underline{A}}(X))$, for $n \geq 0$.
- (3) We denote by $\mathbf{E}_{\underline{A}}^{\omega}$ the operator on $\mathrm{Sub}(A)$ that assigns to an *S*-sorted subset X of A, $\mathbf{E}_{\underline{A}}^{\omega}(X) = \bigcup_{n \in \mathbb{N}} \mathbf{E}_{\underline{A}}^{n}(X)$

Proposition 2. Let <u>A</u> be a many-sorted Σ -algebra and $X \subseteq A$. Then we have that $Sg_A(X) = E^{\omega}_A(X)$.

Proof. See [2]

Proposition 3. Let \underline{A} be a many-sorted Σ -algebra and $X, Y \subseteq A$. Then we have that

(1) If $\operatorname{supp}(X) = \operatorname{supp}(Y)$, then, for every $n \in \mathbb{N}$, $\operatorname{supp}(\operatorname{E}_A^n(X)) = \operatorname{supp}(\operatorname{E}_A^n(Y))$.

(2) $\operatorname{supp}(\operatorname{Sg}_{\underline{A}}(X)) = \bigcup_{n \in \mathbb{N}} \operatorname{supp}(\operatorname{E}_{\underline{A}}^{n}(X)).$

(3) If $\operatorname{supp}(X) = \operatorname{supp}(Y)$, then $\operatorname{supp}(\operatorname{Sg}_{\underline{A}}(X)) = \operatorname{supp}(\operatorname{Sg}_{\underline{A}}(Y))$.

Therefore the many-sorted algebraic closure operator Sg_A is uniform.

Proof. See [2]

Finally we prove the representation theorem for the many-sorted uniform algebraic closure operators, i.e., we prove that for an S-sorted set A a many-sorted

algebraic closure operator J on Sub(A) has the form $Sg_{\underline{A}}$, for some S-sorted signature Σ and some many-sorted Σ -algebra \underline{A} if J is uniform.

Theorem 1. Let J be a many-sorted algebraic closure operator on an S-sorted set A. If J is uniform, then $J = Sg_{\underline{A}}$ for some S-sorted signature Σ and some many-sorted Σ -algebra \underline{A} .

Proof. Let $\Sigma = (\Sigma_{w,s})_{(w,s)\in S^*\times S}$ be the S-sorted signature defined, for every $(w,s)\in S^*\times S$, as follows:

$$\Sigma_{w,s} = \{ (X,b) \in \bigcup_{X \in \operatorname{Sub}(A)} (\{X\} \times J(X)_s) \mid \forall t \in S \left(\operatorname{card}(X_t) = |w|_t \right) \},\$$

where for a sort $s \in S$ and a word $w: |w| \longrightarrow S$ on S, with |w| the lenght of w, the number of occurrences of s in w, denoted by $|w|_s$, is $\operatorname{card}(\{i \in |w| \mid w(i) = s\})$.

We remark that for $(w, s) \in S^* \times S$ and $(X, b) \in \bigcup_{X \in \text{Sub}(A)} (\{X\} \times J(X)_s)$ the following conditions are equivalent:

- (1) $(X, b) \in \Sigma_{w,s}$, i.e., for every $t \in S$, $\operatorname{card}(X_t) = |w|_t$.
- (2) $\operatorname{supp}(X) = \operatorname{Im}(w)$ and, for every $t \in \operatorname{supp}(X)$, $\operatorname{card}(X_t) = |w|_t$.

On the other hand, for the index set $\Lambda = \bigcup_{Y \in \operatorname{Sub}(A)} (\{Y\} \times \operatorname{supp}(Y))$ and the Λ -indexed family $(Y_s)_{(Y,s) \in \Lambda}$ whose (Y, s)-th coordinate is Y_s , precisely the s-th coordinate of the S-sorted set Y of the index $(Y, s) \in \Lambda$, let f be a choice function for $(Y_s)_{(Y,s) \in \Lambda}$, i.e., an element of $\prod_{(Y,s) \in \Lambda} Y_s$. Moreover, for every $w \in S^*$ and $a \in \prod_{i \in |w|} A_{w(i)}$, let $M^{w,a} = (M_s^{w,a})_{s \in S}$ be the finite S-sorted subset of A defined as $M_s^{w,a} = \{a_i \mid i \in w^{-1}[s]\}$, for every $s \in S$.

Now, for $(w, s) \in S^* \times S$ and $(X, b) \in \Sigma_{w,s}$, let $F_{X,b}$ be the many-sorted operation from $\prod_{i \in |w|} A_{w(i)}$ into A_s that to an $a \in \prod_{i \in |w|} A_{w(i)}$ assigns b, if $M^{w,a} = X$ and $f(J(M^{w,a}), s)$, otherwise.

We will prove that the many-sorted Σ -algebra $\underline{A} = (A, F)$ is such that $J = \operatorname{Sg}_{\underline{A}}$. But before that it is necessary to verify that the definition of the many-sorted operations is sound, i.e., that for every $(w,s) \in S^* \times S$, $(X,b) \in \Sigma_{w,s}$ and $a \in \prod_{i \in |w|} A_{w(i)}, s \in \operatorname{supp}(J(M^{w,a}))$ and for this it is enough to prove that $\operatorname{supp}(M^{w,a}) = \operatorname{supp}(X)$, because, by hypothesis, J is uniform and, by definition, $b \in J(X)_s$.

If $t \in \operatorname{supp}(M^{w,a})$, then $M_t^{w,a}$ is nonempty, i.e., there exists an $i \in |w|$ such that w(i) = t. Therefore, because $(X, b) \in \Sigma_{w,s}$, we have that $0 < |w|_t = \operatorname{card}(X_t)$, hence $t \in \operatorname{supp}(X)$.

Reciprocally, if $t \in \operatorname{supp}(X)$, $|w|_t > 0$, and there is an $i \in |w|$ such that w(i) = t, hence $a_i \in A_t$, and from this we conclude that $M_t^{w,a} \neq \emptyset$, i.e., that $t \in \operatorname{supp}(M^{w,a})$. Therefore, $\operatorname{supp}(M^{w,a}) = \operatorname{supp}(X)$ and, by the uniformity of J, $\operatorname{supp}(J(M^{w,a})) = \operatorname{supp}(J(X))$. But, by definition, $b \in J(X)_s$, so $s \in \operatorname{supp}(J(M^{w,a}))$ and the definition is sound.

Now we prove that, for every $X \subseteq A$, $J(X) \subseteq \operatorname{Sg}_{\underline{A}}(X)$. Let X be an S-sorted subset of A, $s \in S$ and $b \in J(X)_s$. Then, because \overline{J} is algebraic, $b \in J(Y)_s$, for some finite S-sorted subset Y of X. From such an Y we will define a word w_Y in S and an element a_Y of $\prod_{i \in |w_Y|} A_{w_Y(i)}$ such that

- (1). $Y = M^{w_Y, a_Y}$,
- (2). $(Y,b) \in \Sigma_{w_Y,s}$, i.e., $b \in J(Y)_s$ and, for all $t \in S$, $\operatorname{card}(Y_t) = |w_Y|_t$, and
- (3). $a_Y \in \prod_{i \in |w_Y|} X_{w_Y(i)}$,

then, because $F_{Y,b}(a_Y) = b$, we will be entitled to assert that $b \in \text{Sg}_A(X)_s$.

But taking into account that Y is finite iff $\operatorname{supp}(Y)$ is finite and, for every $t \in \operatorname{supp}(Y)$, Y_t is finite, let $\{s_{\alpha} \mid \alpha \in m\}$ be an enumeration of $\operatorname{supp}(Y)$ and, for every $\alpha \in m$, let $\{y_{\alpha,i} \mid i \in p_{\alpha}\}$ be an enumeration of the nonempty s_{α} -th coordinate, $Y_{s_{\alpha}}$, of Y. Then we define, on the one hand, the word w_Y as the

mapping from $|w_Y| = \sum_{\alpha \in m} p_\alpha$ into S such that, for every $i \in |w_Y|$ and $\alpha \in m$, $w_Y(i) = s_\alpha$ iff $\sum_{\beta \in \alpha} p_\beta \leq i \leq \sum_{\beta \in \alpha+1} p_\beta - 1$ and, on the other hand, the element a_Y of $\prod_{i \in |w_Y|} A_{w_Y(i)}$ as the mapping from $|w_Y|$ into $\bigcup_{i \in |w_Y|} A_{w_Y(i)}$ such that, for every $i \in |w_Y|$ and $\alpha \in m$, $a_Y(i) = y_{\alpha,i-\sum_{\beta \in \alpha} p_\beta}$ iff $\sum_{\beta \in \alpha} p_\beta \leq i \leq \sum_{\beta \in \alpha+1} p_\beta - 1$. From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a particular case of the fact that the mapping M from $\bigcup_{w \in S^*} (\{w\} \times \prod_{i \in |w|} A_{w(i)})$ into $\operatorname{Sub}_f(A)$ that to a pair (w, a) assigns $M^{w,a}$ is surjective.

From the above and the definition of $F_{Y,b}$ we can affirm that $F_{Y,b}(a_Y) = b$, hence $b \in \text{Sg}_A(X)_s$. Therefore $J(X) \subseteq \text{Sg}_A(X)$.

Finally, we prove that, for every $X \subseteq A$, $\operatorname{Sg}_{\underline{A}}(X) \subseteq J(X)$. But for this, by the Proposition 2, it is enough to prove that, for every subset X of A, we have that $\operatorname{E}_{\underline{A}}(X) \subseteq J(X)$. Let $s \in S$ be and $c \in \operatorname{E}_{\underline{A}}(X)_s$. If $c \in X_s$, then $c \in J(X)_s$, because J is extensive. If $c \notin X_s$, then, by the definition of $\operatorname{E}_{\underline{A}}(X)$, there exists a word $w \in S^*$, a many-sorted formal operation $(Y, b) \in \Sigma_{w,s}$ and an $a \in \prod_{i \in |w|} X_{w(i)}$ such that $F_{Y,b}(a) = c$. If $M^{w,a} = Y$, then c = b, hence $c \in J(Y)_s$, therefore, because $M^{w,a} \subseteq X$, $c \in J(X)_s$. If $M^{w,a} \neq Y$, then $F_{Y,b}(a) \in J(M^{w,a})_s$, but, because $M^{w,a} \subseteq X$ and J is isotone, $J(M^{w,a})$ is a subset of J(X), hence $F_{Y,b}(a) \in J(X)_s$.

From this last Theorem and the Proposition 3. we obtain

Corollary 1. Let J be a many-sorted algebraic closure operator on an S- sorted set A. Then $J = Sg_A$ for some many-sorted Σ -algebra \underline{A} iff J is uniform.

References

- G. Birkhoff and O. Frink, Representation of lattices by sets, Trans. Amer. Math. Soc., 64 (1948), pp. 299–316.
- J. Climent and L. Fernandino, On the relation between heterogeneous uniform 2-algebraic closure operators and heterogeneous algebras, Collec. Math., 40 (1990), pp 93–101; MR 92d:08009 (A. Blass).
- [3] J. Goguen and J. Meseguer, Completeness of many-sorted equational logic, Houston Journal of Mathematics, 11 (1985), pp. 307–334.
- [4] G. Grätzer, Universal algebra. 2nd ed., Springer-Verlag, 1979.
- [5] G. Matthiessen, Theorie der Heterogenen Algebren, Mathematik-Arbeits-Papiere, Nr. 3, Universität, Bremen, 1976.

Universidad de Valencia, Departamento de Lógica y Filosofía de la Ciencia, E-46010 Valencia, Spain

E-mail address: Juan.B.Climent@uv.es