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Abstract. A theorem of Birkhoff-Frink asserts that every algebraic closure
operator on an ordinary set arises, from some algebraic structure on the set, as
the operator that constructs the subalgebra generated by a subset. However,
for many-sorted sets, i.e., indexed families of sets, such a theorem is not longer
true without qualification. We characterize the corresponding many-sorted
closure operators as precisely the uniform algebraic operators.

Some theorems of ordinary universal algebra can not be automatically general-
ized to many-sorted universal algebra, e.g., Matthiessen [5] proves that there exist
many-sorted algebraic closure systems that can not be concretely represented as
the set of subalgebras of a many-sorted algebra. As is well known, according to a
representation theorem of Birkhoff and Frink [1], this is not so for the single-sorted
algebraic closure systems.

In [2] it was obtained a concrete representation for the so-called many-sorted
uniform 2-algebraic closure operators. However, as will be proved below, confirming
a conjecture by A. Blass in his review of [2], the main result in [2] remains true if we
delete from the above class of many-sorted operators the condition of 2-algebraicity.
Therefore a many-sorted algebraic closure operator will be concretely representable
as the set of subalgebras of a many-sorted algebra iff it is uniform. We point out
that the proof we offer follows substantially that in Grätzer [4] for the single-sorted
case, but differs from it, among others things, by the use we have to make, on the
one hand, of the concept of uniformity, missing in the single-sorted case, and, on
the other hand, of the Axiom of Choice, because of the lack, in the many-sorted
case, of a canonical choice in the definition of the many-sorted operations.

In what follows we use, for a set of sorts S and an S-sorted signature Σ, the
concept of many-sorted Σ-algebra and subalgebra in the standard meaning, see
e.g., [3].

To begin with, as for ordinary algebras, also the set of subalgebras of a many-
sorted algebra is an algebraic closure system.

Proposition 1. Let A be a many-sorted Σ-algebra. Then the set of all subalgebras
of A, denoted by Sub(A), is an algebraic closure system on A, i.e., we have

(1) A ∈ Sub(A).
(2) If I is not empty and (Xi)i∈I is a family in Sub(A), then

⋂
i∈I Xi is also

in Sub(A).
(3) If I is not empty and (Xi)i∈I is an upwards directed family in Sub(A), then⋃

i∈I Xi is also in Sub(A).

However, as we will prove later on, in the many-sorted case the many-sorted
algebraic closure operator canonically associated to the algebraic closure system
of the subalgebras of a many-sorted algebra has an additional and characteristic
property, that of being uniform.
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Now we recall the concept of support of a sorted set and that of many-sorted
algebraic closure operator on a sorted set, essentials to define that of many-sorted
algebraic uniform closure operator.

Definition 1. Let A be an S-sorted set. Then the support of A, denoted by
supp(A), is the subset { s ∈ S | As 6= ∅ } of S.

Definition 2. Let A be an S-sorted set. A many-sorted algebraic closure operator
on A is an operator J on Sub(A), the set of all S-sorted subsets of A, such that,
for every X,Y ⊆ A, satisfies:

(1) X ⊆ J(X), i.e., J is extensive.
(2) If X ⊆ Y , then J(X) ⊆ J(Y ), i.e., J is isotone.
(3) J(J(X)) = J(X), i.e., J is idempotent.
(4) J(X) =

⋃
F∈Subf(X) J(F ), i.e., J is algebraic, where a part F of X is in

Subf(X), the set of finite S-sorted subsets of X, iff supp(F ) is finite and,
for every s ∈ supp(F ), Fs is finite.

A many-sorted algebraic closure operator J on A is uniform iff, for X, Y ⊆ A,
from supp(X) = supp(Y ), follows that supp(J(X)) = supp(J(Y )).

Definition 3. Let A be a many-sorted Σ-algebra. We denote by SgA the many-
sorted algebraic closure operator on A canonically associated to the algebraic closure
system Sub(A). If X ⊆ A, SgA(X) is the subalgebra of A generated by X.

Next, as for ordinary algebras, we define for a many-sorted Σ-algebra A an
operator on Sub(A) that will allow us to obtain, for every subset of A, by recursion,
an N-ascending chain of subsets of A from which, taking the union, we will obtain an
equivalent, but more constructive, description of the subalgebra of A generated by a
subset of A. Moreover, we will make use of this alternative description to prove the
uniformity of the operator SgA and also in the proof of the representation theorem.

Definition 4. Let A = (A,F ) be a many-sorted Σ-algebra.
(1) We denote by EA the operator on Sub(A) that assigns to an S-sorted subset

X of A, EA(X) = X ∪ ( ⋃
σ∈Σ·,s Fσ[Xar(σ)]

)
s∈S

, where, for s ∈ S, Σ·,s is
the set of all many-sorted formal operations σ such that the coarity of σ is
s and for ar(σ) = (sj)j∈m ∈ S?, the arity of σ, Xar(σ) =

∏
j∈m Xsj .

(2) If X ⊆ A, then the family (En
A(X))n∈N in Sub(A) is such that E0

A(X) = X

and En+1
A (X) = EA(En

A(X)), for n ≥ 0.
(3) We denote by Eω

A the operator on Sub(A) that assigns to an S-sorted subset
X of A, Eω

A(X) =
⋃

n∈N En
A(X)

Proposition 2. Let A be a many-sorted Σ-algebra and X ⊆ A. Then we have that
SgA(X) = Eω

A(X).

Proof. See [2] ¤
Proposition 3. Let A be a many-sorted Σ-algebra and X,Y ⊆ A. Then we have
that

(1) If supp(X) = supp(Y ), then, for every n ∈ N, supp(En
A(X)) = supp(En

A(Y )).
(2) supp(SgA(X)) =

⋃
n∈N supp(En

A(X)).
(3) If supp(X) = supp(Y ), then supp(SgA(X)) = supp(SgA(Y )).

Therefore the many-sorted algebraic closure operator SgA is uniform.

Proof. See [2] ¤
Finally we prove the representation theorem for the many-sorted uniform alge-

braic closure operators, i.e., we prove that for an S-sorted set A a many-sorted
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algebraic closure operator J on Sub(A) has the form SgA, for some S-sorted signa-
ture Σ and some many-sorted Σ-algebra A if J is uniform.

Theorem 1. Let J be a many-sorted algebraic closure operator on an S-sorted
set A. If J is uniform, then J = SgA for some S-sorted signature Σ and some
many-sorted Σ-algebra A.

Proof. Let Σ = (Σw,s)(w,s)∈S?×S be the S-sorted signature defined, for every
(w, s) ∈ S? × S, as follows:

Σw,s = { (X, b) ∈ ⋃
X∈Sub(A)({X} × J(X)s) | ∀t ∈ S (card(Xt) = |w|t) },

where for a sort s ∈ S and a word w : |w| // S on S, with |w| the lenght of w, the
number of occurrences of s in w, denoted by |w|s, is card({i ∈ |w| | w(i) = s}).

We remark that for (w, s) ∈ S? × S and (X, b) ∈ ⋃
X∈Sub(A)({X} × J(X)s) the

following conditions are equivalent:
(1) (X, b) ∈ Σw,s, i.e., for every t ∈ S, card(Xt) = |w|t.
(2) supp(X) = Im(w) and, for every t ∈ supp(X), card(Xt) = |w|t.

On the other hand, for the index set Λ =
⋃

Y ∈Sub(A)({Y } × supp(Y )) and the
Λ-indexed family (Ys)(Y,s)∈Λ whose (Y, s)-th coordinate is Ys, precisely the s-th
coordinate of the S-sorted set Y of the index (Y, s) ∈ Λ, let f be a choice function
for (Ys)(Y,s)∈Λ, i.e., an element of

∏
(Y,s)∈Λ Ys. Moreover, for every w ∈ S? and

a ∈ ∏
i∈|w|Aw(i), let Mw,a = (Mw,a

s )s∈S be the finite S-sorted subset of A defined
as Mw,a

s = {ai | i ∈ w−1[s]}, for every s ∈ S.
Now, for (w, s) ∈ S?×S and (X, b) ∈ Σw,s, let FX,b be the many-sorted operation

from
∏

i∈|w|Aw(i) into As that to an a ∈ ∏
i∈|w|Aw(i) assigns b, if Mw,a = X and

f(J(Mw,a), s), otherwise.
We will prove that the many-sorted Σ-algebra A = (A, F ) is such that J =

SgA. But before that it is necessary to verify that the definition of the many-
sorted operations is sound, i.e., that for every (w, s) ∈ S? × S, (X, b) ∈ Σw,s

and a ∈ ∏
i∈|w|Aw(i), s ∈ supp(J(Mw,a)) and for this it is enough to prove that

supp(Mw,a) = supp(X), because, by hypothesis, J is uniform and, by definition,
b ∈ J(X)s.

If t ∈ supp(Mw,a), then Mw,a
t is nonempty, i.e., there exists an i ∈ |w| such that

w(i) = t. Therefore, because (X, b) ∈ Σw,s, we have that 0 < |w|t = card(Xt),
hence t ∈ supp(X).

Reciprocally, if t ∈ supp(X), |w|t > 0, and there is an i ∈ |w| such that w(i) = t,
hence ai ∈ At, and from this we conclude that Mw,a

t 6= ∅, i.e., that t ∈ supp(Mw,a).
Therefore, supp(Mw,a) = supp(X) and, by the uniformity of J , supp(J(Mw,a)) =
supp(J(X)). But, by definition, b ∈ J(X)s, so s ∈ supp(J(Mw,a)) and the defini-
tion is sound.

Now we prove that, for every X ⊆ A, J(X) ⊆ SgA(X). Let X be an S-sorted
subset of A, s ∈ S and b ∈ J(X)s. Then, because J is algebraic, b ∈ J(Y )s, for
some finite S-sorted subset Y of X. From such an Y we will define a word wY in
S and an element aY of

∏
i∈|wY |AwY (i) such that

(1). Y = MwY ,aY ,
(2). (Y, b) ∈ ΣwY ,s, i.e., b ∈ J(Y )s and, for all t ∈ S, card(Yt) = |wY |t, and
(3). aY ∈ ∏

i∈|wY |XwY (i),

then, because FY,b(aY ) = b, we will be entitled to assert that b ∈ SgA(X)s.
But taking into account that Y is finite iff supp(Y ) is finite and, for every

t ∈ supp(Y ), Yt is finite, let { sα | α ∈ m } be an enumeration of supp(Y ) and,
for every α ∈ m, let { yα,i | i ∈ pα } be an enumeration of the nonempty sα-th
coordinate, Ysα , of Y . Then we define, on the one hand, the word wY as the
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mapping from |wY | =
∑

α∈m pα into S such that, for every i ∈ |wY | and α ∈ m,
wY (i) = sα iff

∑
β∈α pβ ≤ i ≤ ∑

β∈α+1 pβ − 1 and, on the other hand, the element
aY of

∏
i∈|wY |AwY (i) as the mapping from |wY | into

⋃
i∈|wY |AwY (i) such that, for

every i ∈ |wY | and α ∈ m, aY (i) = yα,i−∑
β∈α pβ

iff
∑

β∈α pβ ≤ i ≤ ∑
β∈α+1 pβ − 1.

From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a
particular case of the fact that the mapping M from

⋃
w∈S?({w} ×∏

i∈|w|Aw(i))
into Subf(A) that to a pair (w, a) assigns Mw,a is surjective.

From the above and the definition of FY,b we can affirm that FY,b(aY ) = b, hence
b ∈ SgA(X)s. Therefore J(X) ⊆ SgA(X).

Finally, we prove that, for every X ⊆ A, SgA(X) ⊆ J(X). But for this, by the
Proposition 2, it is enough to prove that, for every subset X of A, we have that
EA(X) ⊆ J(X). Let s ∈ S be and c ∈ EA(X)s. If c ∈ Xs, then c ∈ J(X)s, because
J is extensive. If c 6∈ Xs, then, by the definition of EA(X), there exists a word
w ∈ S?, a many-sorted formal operation (Y, b) ∈ Σw,s and an a ∈ ∏

i∈|w|Xw(i) such
that FY,b(a) = c. If Mw,a = Y , then c = b, hence c ∈ J(Y )s, therefore, because
Mw,a ⊆ X, c ∈ J(X)s. If Mw,a 6= Y , then FY,b(a) ∈ J(Mw,a)s, but, because
Mw,a ⊆ X and J is isotone, J(Mw,a) is a subset of J(X), hence FY,b(a) ∈ J(X)s.
Therefore EA(X) ⊆ J(X). ¤

From this last Theorem and the Proposition 3. we obtain

Corollary 1. Let J be a many-sorted algebraic closure operator on an S- sorted
set A. Then J = SgA for some many-sorted Σ-algebra A iff J is uniform.
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